земной

Строение земной коры

Существует два вида земной коры: океанический и континентальный .

Океанические участки характеризуются значительно меньшей толщиной по сравнению с континентальными. Но вот их площадь значительно больше. Состав этой коры в основном составляет базальтовый слой

Структура континентальной коры более сложная. Чаще всего а в ней насчитывают три различных слоя: осадочный, гранитный и базальтовый.

Важно знать, что состав коры неоднороден. На некоторых участках присутствуют все три слоя, но есть и участки, где в основном встречается один или два

Например, базальтовый слой может отсутствовать, а участок земной коры будет состоять преимущественно из гранита.

Рецепты Натальи Земной

Эфир: 8 сентября 2009 г.
Советы Натальи Земной по лечению следующих заболеваний: ожирение, липомы, нарушение обмена веществ, увеличенные аденоиды, лямблиозный холецистит, гельминты, шлаки в организме, мочекаменная болезнь, жёлчнокаменная болезнь, полипы, железодефицитная анемия, гипертония, высыпания на лице, дисбактериоз (подробнее о заболевании) , дерматит, сахарный диабет, пониженная секреторная функция поджелудочной железы, геморрой, отсутствие аппетита у ребёнка, фибромиомы, кровотечения, катаракта, остеохондроз, стенокардия, рассеянный склероз, коклюш, бронхиальная астма, кашель, простатит, аденома предстательной железы, ослабление потенции, заболевания нервной системы, печени, селезёнки, щитовидной железы, желудочно-кишечного тракта и др.

Рассмотрены лекарственные свойства трав: баклажан (Solánum melongéna), пижма (Tanacétum), бархатцы / чорнобривці (Tagetes), просо (Panicum), лук (Állium), чеснок (Allium sativum L.), арбуз (Citrullus), кабачок (Cucurbita pepo var. giromontina), патиссон (Cucurbita pepo), рябина (Sórbus), полынь (лат. Artemísia), ромашка (Matricária), тысячелистник (Achilléa), калина (Viburnum), бузина (Sambucus), анис обыкновенный (Pimpinélla anísum), тмин (Cárum), укроп (Anethum), перец (Piper), помидор/томат (Solánum lycopérsicum), огурец (лат. Cucumis sativus), одуванчик (лат. Taráxacum), цикорий (Cichorium), виноград (Vítis), лапчатка белая (Potentilla alba), лапчатка гусиная (лат. Potentilla anserina), лапчатка серебристая (Potentilla argentea), мелколепестник канадский (Erigeron canadensis L.), плющ (Hédera), кизил (Córnus), олива/маслина (лат. Olea), хрен (Armorácia), астра (Aster), георгина (Dáhlia), морковь дикая (Dáucus caróta), мордовник (Echínops), николайчики / синеголовник (Erýngium), кермек (лат. Limonium), яблоня (лат. Málus), дурнишник (Xanthium), гринделия растопыренная (Grindelia squarrosa (Pursh) Dunal), шиповник (лат. Rósa) и др.

Теории дрейфа материков и литосферных плит

Согласно современной теории литосферных плит вся литосфера узкими и активными зонами — глубинными разломами — разделена на отдельные блоки, перемещающиеся в пластичном слое верхней мантии относительно друг друга со скоростью 2-3 см в год. Эти блоки называются литосферными плитами.

Особенность литосферных плит — их жесткость и способность при отсутствии внешних воздействий длительное время сохранять неизменными форму и строение.

Литосферные плиты подвижны. Их перемещение по поверхности астеносферы происходит под влиянием конвективных течений в мантии. Отдельные литосферные плиты могут расходиться, сближаться или скользить друг относительно друга. В первом случае между плитами возникают зоны растяжения с трещинами вдоль границ плит, во втором — зоны сжатия, сопровождаемые надвиганием одной плиты на другую (надвигание — обдукция; поддвигание — субдукция), в третьем — сдвиговые зоны — разломы, вдоль которых происходит скольжение соседних плит.

В местах схождения континентальных плит происходит их столкновение, образуются горные пояса. Так возникла, например, на границе Евразийской и Индо-Австралийской плиты горная система Гималаи (рис. 1).

Рис. 1. Столкновение континентальных литосферных плит

При взаимодействии континентальной и океанической плит, плита с океанической земной корой пододвигается под плиту с континентальной земной корой (рис. 2).

Рис. 2. Столкновение континентальной и океанической литосферных плит

В результате столкновения континентальной и океанической литосферных плит образуются глубоководные желоба и островные дуги.

Расхождение литосферных плит и образование в результате этого земной коры океанического типа показано на рис. 3.

Для осевых зон срединно-океанических хребтов характерны рифты (от англ. rift — расщелина, трещина, разлом) — крупная линейная тектоническая структура земной коры протяженностью в сотни, тысячи, шириной в десятки, а иногда и сотни километров, образовавшаяся главным образом при горизонтальном растяжении коры (рис. 4). Очень крупные рифты называются рифтовыми поясами, зонами или системами.

Так как литосферная плита представляет собой единую пластину, то каждый ее разлом — это источник сейсмической активности и вулканизма. Эти источники сосредоточены в пределах сравнительно узких зон, вдоль которых происходят взаимные перемещения и трения смежных плит. Эти зоны получили название сейсмических поясов. Рифы, срединно-океанические хребты и глубоководные желоба являются подвижными областями Земли и располагаются на границах литосферных плит. Это свидетельствует о том, что процесс формирования земной коры в этих зонах в настоящее время происходит очень интенсивно.

Рис. 3. Расхождение литосферных плит в зоне среди нно-океанического хребта

Рис. 4. Схема образования рифта

Больше всего разломов литосферных плит на дне океанов, где земная кора тоньше, однако встречаются они и на суше. Наиболее крупный разлом на суше располагается на востоке Африки. Он протянулся на 4000 км. Ширина этого разлома — 80-120 км.

Чем дальше от границ подвижных участков к центру литосферной плиты, тем более устойчивыми становятся участки земной коры.

В настоящее время можно выделить семь наиболее крупных плит (рис. 5). Из них самая большая по площади — Тихоокеанская, которая целиком состоит из океанической литосферы. Как правило, к крупным относят и плиту Наска, которая в несколько раз меньше по размерам, чем каждая из семи самых крупных. При этом ученые предполагают, что на самом деле плита Наска гораздо большего размера, чем мы видим ее на карте (см. рис. 5), так как значительная часть ее ушла под соседние плиты. Эта плита также состоит только из океанической литосферы.

Рис. 5. Литосферные плиты Земли

Примером плиты, которая включает как материковую, так и океаническую литосферу, может служить, например, Индо-Авст- ралийская литосферная плита. Почти целиком состоит из материковой литосферы Аравийская плита.

Теория литосферных плит имеет важное значение. Прежде всего, она может объяснить, почему в одних местах Земли расположены горы, а в других — равнины

С помощью теории литосферных плит можно объяснить и спрогнозировать катастрофические явления, происходящие на границах плит.

Рис. 6. Очертания материков действительно представляются совместимыми

Океаническая кора

Океаническая кора состоит главным образом из базальтов. Согласно теории тектоники плит, она непрерывно образуется в срединно-океанических хребтах, расходится от них и поглощается в мантию в зонах субдукции. Поэтому океаническая кора относительно молодая, и самые древние её участки датируются поздней юрой.

Толщина океанической коры практически не меняется со временем, поскольку в основном она определяется количеством расплава, выделившегося из материала мантии в зонах срединно-океанических хребтов. До некоторой степени влияние оказывает толщина осадочного слоя на дне океанов. В разных географических областях толщина океанической коры колеблется в пределах 5—10 километров (9—12 километров вместе с водой).

В рамках стратификации Земли по механическим свойствам, океаническая кора относится к океанической литосфере. Толщина океанической литосферы, в отличие от коры, зависит в основном от её возраста. В зонах срединно-океанических хребтов астеносфера подходит очень близко к поверхности, и литосферный слой практически полностью отсутствует. По мере удаления от зон срединно-океанических хребтов толщина литосферы сначала растёт пропорционально её возрасту, затем скорость роста снижается. В зонах субдукции толщина океанической литосферы достигает наибольших значений, составляя 130—140 километров.

Континентальная земная кора

Этот вид коры имеет мощность  от тридцати пяти до семидесяти километров. Состоит она из трех слоев (нижнего, среднего и верхнего), но их качественный состав в значительной степени отличается от слоев океанической коры.

Нижний слой толщиной примерно в двадцать километров имеет базальтовую природу

Средний принято считать гранитным. Но в его составе встречаются не только граниты, но и гнейсы. Он является наиболее толстым слоем

Важно знать, что под океанами такой слой не встречается

Верхний слой составляют осадочные породы. Его толщина (мощность) колеблется и в разных районах составляет  от трех до десяти километров. На некоторых участках осадочный слой может отсутствовать. Такие участки принято именовать щитами например, Балтийский щит).

На некоторых участках материков горные породу выветриваются. Из-за этого появляются участи так называемой коры выветривания.

Стоит отметить, что гранитный слой отделяется от базальтового поверхностью Конрада. Сейсмические волны здесь имеют довольно большую скорость, которая может доходить до 7,6 километров в секунду.

Линия Мохо, отделяющая земную кору от мантии (это справедливо и для океанов, и для материков) характеризуется скоростью этих волн доходящей до восьми километров в час. Однако на поверхности Мохоровичича эта скорость повышается скачкообразно.

Встречаются и участки переходного типа (смешанные). Например, смешанные участки встречаются в районе Курильских, Алеутских островов и некоторых других территорий Восточной Азии.

Особо выделяют земную кору срединных океанических хребтов. Эти участки коры меньше всего изучены, не имеют линии Мохо, а вещество мантии может не только проходить в кору, но даже подниматься на поверхность.

Земля планета Солнечной системы

Земля — планета Солнечной системы. Земля — одно из небесных тел, которые вращаются вокруг Солнца. Солнце — это звезда, пылающий шар, вокруг которого вращаются планеты. Они вместе с Солнцем, своими спутниками, множеством малых планет (астероидов), комет и метеорной пыли составляют Солнечную систему. Наша галактика — Млечный путь, его диаметр равен примерно 100 тыс. световых лет (столько времени будет идти свет до последней точки данного пространства).

Земля — третья по счету из восьми планет, она имеет диаметр около 13 тыс. км. Она находится на расстоянии 150 млн км от Солнца (третья от Солнца). Земля вместе с Венерой, Марсом и Меркурием входит во внутреннюю (земную) группу планет. Один оборот вокруг Солнца Земля совершает за 365 суток 5 часов 48 минут, или за один год. Путь Земли вокруг Солнца (орбита Земли) близок по форме к окружности.

Земля, как и другие планеты, шарообразна. В результате вращения вокруг своей оси она слабо приплюснута у полюсов. Из-за неоднородного строения недр Земли и неоднородного распределения масс форма Земли отклоняется от правильной формы эллипсоида вращения. Истинная геометрическая фигура Земли получила название геоид (землеподобный). Геоид – фигура, поверхность которой всюду перпендикулярна направлению силы тяжести. Фигуры сфероида и геоида не совпадают. Различия наблюдаются в пределах 50—150 м.

Вращение Земли.

Одновременно с движением вокруг Солнца Земля вращается вокруг своей оси, поворачиваясь к Солнцу то одним полушарием, то другим. Период вращения равен примерно 24 часам, или одним суткам. Земная ось — это воображаемая прямая, проходящая через центр Земли. Ось пересекает поверхность Земли в двух точках: Северном и Южном полюсах. На равных расстояниях от географических полюсов проходит экватор — воображаемая линия, которая делит Землю на два равных полушария: Северное и Южное.

Воображаемая ось, вокруг которой вращается Земля, наклонена к плоскости орбиты, по которой Земля вращается вокруг Солнца. Из-за этого в разное время года Земля повернута к Солнцу то одним полюсом, то другим. Когда к Солнцу обращена область вокруг Северного полюса, то в Северном полушарии (в котором мы живем) лето, а в Южном — зима. Когда к Солнцу обращена область вокруг Южного полюса, то наоборот: в Южном полушарии — лето, а в Северном — зима.

Таким образом, из-за вращения Земли вокруг Солнца, а также из-за наклона земной оси на нашей планете сменяются времена года. Кроме того, разные части Земли получают от Солнца разное количество тепла, это определяет существование тепловых поясов: жаркого тропического, умеренных и холодных полярных.

Земля обладает невидимым магнитным полем. Наличие этого поля заставляет стрелку компаса всегда показывать на север. Земля имеет единственный естественный спутник — Луну (на расстоянии 384 400 км от Земли). Луна вращается вокруг Земли. Она отражает солнечный свет, поэтому нам кажется, что она светится.

От притяжения Луны на Земле бывают приливы и отливы. Они особенно заметны на побережье открытого океана. Лунное притяжение так велико, что поверхность океана выгибается навстречу нашему спутнику. Луна движется вокруг Земли, и за ней бежит по океану приливная волна. Когда она достигает берега, происходит прилив. Через некоторое время вода отходит от берега вслед за Луной.

Таблица «Земля — планета Солнечной системы».

Следующая тема: Движение Земли. Годовое обращение

Геологические разломы

Все геологические разломы подразделяют на три группы по направлению движения. Если разлом происходит в вертикальной плоскости, его называют разломом со смещением по падению, в горизонтальной – со сдвигом, в двух этих плоскостях – сбросо-сдвигом.

Разломы земной коры со смещением по падению, в свою очередь, объединяют три типа:
— взбросы;
— сбросы;
— надвиги.

При взбросах происходит сжимание земной коры, при этом висячий бок перемещается кверху по отношению к подошве, а угол наклона трещины составляет более 45°. Появление сбросов наблюдается при растяжении земной коры. В этом случае висячий бок блока земной коры опускается относительно подошвы. Часть земной коры, которая опустилась ниже других участков сброса, называется грабеном. Приподнятые участки сброса – горсты. Надвиг – это разлом земной коры с направлением движения пластов аналогично взбросу, но в отличие от него с углом наклона трещины менее 45°. При надвигах образуются скаты, складки и рифты.

Сдвиги характеризуются вертикальным расположением поверхности разлома, причем подошва передвигается в правую или левую сторону. Соответственно, различают правосторонние и левосторонние сдвиги. Различают такой тип сдвига, как трансформный разлом, который происходит перпендикулярно срединно-океаническому хребту и делит его на участки шириной до 400 км.

Толщину разломов обычно измеряют по величине деформированных горных пород и определяют слой земной коры, где был разрыв. Также оценивают типы горных пород и определяют наличие жидкостей минерализации. При длительном существовании крупного разлома — смещения по падению — происходит наслоение друг на друга пород из разных уровней земной коры.

К основным типам горных пород при разломах земной коры относятся милонит, катаклазит, тектоническая брекчия, псевдотахилит, сбросовая грязь.

Обычно разломы представляют собой геохимические барьеры, скрывающие твердые полезные ископаемые. Зачастую такие барьеры непреодолимы для растворов солей, газа и нефти, благодаря накладыванию горных пород. Эти обусловлено их улавливание и формирование месторождений.

Глубинные разломы определяют и наносят на карту, используя космические снимки, геофизические методики исследования (сейсмическое зондирование земной коры, гравиметрическую съемку, магнитную съемку), геохимические методы (гелиевую и радоновую съемку).

Похожие материалы:

Развитие земной корыДвижение земной коры

Формирование поверхности древней Земли и возникновение Луны 4,64 млрд лет назад

На начальном этапе формирования Земли (около 4,6–4 млрд лет назад) расслоение внутренней материи земного шара сопровождалось интенсивной метеоритной бомбардировкой поверхности планеты. Метеориты падали на Землю и образовывали кратеры. Огромная энергия ударов, подчиняясь закону ее сохранения, переходила в тепло: холодные (около абсолютного нуля!) метеориты разогревали земную поверхность и недра планеты. Одновременно с метеоритным подогревом шло постоянное извержение огромного количества вулканов. Пары и газы выходили наружу из глубин планеты.

Процесс извержения вулкана

Из раскаленных недр вырывалась расплавленная магма, которая покрывала огромные пространства юной планеты и образовывала базальтовые поля — в то время земная поверхность была похожа на лунную.

Шаг за шагом внутренняя структура Земли приближалась к современной научной модели. Формировались ядро, мантия и кора, которая еще многократно изменялась, прежде чем приняла знакомые нам очертания.

Луна превосходит любой другой спутник в Солнечной системе по соотношению собственного размера к такой же характеристике Земли. В этом заключатся непохожесть Луны на другие планеты-спутники. Ее загадку долго пыталась разгадать современная наука. Наиболее убедительной считается гипотеза, согласно которой Луна появилась после мощного столкновения небесных тел. О подробностях этой космической катастрофы и ее влиянии на историю Земли мы поговорим позже.

Присутствием огромного спутника объясняются многие явления на нашей планете. Луна находится по космическим меркам не очень далеко от нас, поэтому ее притяжение хорошо ощущается на Земле. Оно вызывает приливы и отливы не только в океанах, но и в закрытых водоемах земной коры.

Лунное притяжение вызывает волны, которые пробегают по земной поверхности и вытягивают ее примерно на 50 см в сторону планеты-спутника.

Гидросфера

Общий объем воды на планете – около 1390 млн. км3, не удивительно, что 72% общей площади Земли занято океанами. Океаны очень важная часть геологической деятельности. Масса же гидросферы примерно 1,46*1021кг – это почти в 300 раз больше массы атмосферы, но совсем малая доля от массы всей планеты.

Гидросфера делится на Мировой океан, подземные воды и поверхностные воды.

Самая глубокая точка в Мировом океане (Марианская впадина) – 10 994 метра, средняя глубина океана составляет 3800 м.

Поверхностные континентальные воды занимают лишь малую долю в общей массе гидросферы, но тем не менее играют важнейшую роль в жизни наземной биосферы, являясь основным источником водоснабжения, орошения и обводнения. Сверх того эта часть гидросферы находится в постоянном взаимодействии с атмосферой и земной корой.

Вода, находящаяся в твердом состоянии, называют криосферой.

Водная составляющая поверхности планеты определяет климат.

Магнитное поле Земли

Земля представляется в виде магнита, апроксимируется диполем (северный и южный полис). На северном полюсе силовые линии входят в внутрь, а на южном выходят. На самом деле на северном полюсе (географическом) должен быть южный полюс, а на южном (географическом) должен быть северный, но было условленно наоборот. Ось вращения Земли и географическая ось не совпадают, разница по центру расхождения около 420-430 км.

Магнитные полюса Земли не находятся на одном месте, происходит постоянное смещение. На экваторе магнитное поле Земли имеет индукцию 3,05·10-5  Tл и магнитный момент 7,91·1015 Tл·м3. Напряженность магнитного поля не большое, например, у магнита на двери шкафа в 30 раз больше.

По остаточной намагниченности было определенно, что магнитное поле меняло свой знак очень много раз, несколько тысяч.

Магнитное поле образует магнитосферу, которая задерживает вредное излучение Солнца.

Происхождение магнитного поля для нас остается загадкой, существует только гипотезы, они заключается в том, что наша Земля – это магнитное гидродинамо. Например, на Меркурии нет магнитного поля.

Время, когда появилось магнитное поле тоже остается проблемой, известно, что оно было 3,5 млрд. лет назад. Но совсем недавно появились данные, что в минералах циркона, найденных в Австралии, возраст которых 4,3 млрд. лет осталась остаточная намагниченность, что остается загадкой.

Форма и внутреннее строение Земли

Планета Земля имеет 3 разные оси: по экватору, полярный и экваториальные радиусы, структурно является кардиоидальным эллипсоид, было вычислено, что полярные области чуть-чуть приподняты по отношению к другим областям и напоминают форму сердца, северное полушарие приподнято на 30 метров относительно южного полушария. Наблюдается полярная ассиметрия структуры, но тем не менее мы считаем, что Земля имеет форму сфероида. Благодаря изучению со спутников было выявлено, что Земля имеет на своей поверхности впадины и была представлена картина Земли в виде груши, то есть она является трехосным эллипсоидом вращения. Отличие геоида от трехосного эллипсоида не более 100 м, это вызвано неравномерным распределением масс как на поверхности Земли (океаны и континенты), так и внутри неё. В каждой точки поверхности геоида сила тяжести направлена к ней перпендикулярно, является эквипотенциальной поверхностью.

Основным методом изучения строения Земли является сейсмологический метод. Метод основан на изучении изменения скоростей сейсмических волн от плотности вещества внутри Земли.

Земля имеет слоистую внутреннее строение. Она состоит из твердых селикатных оболочек (коры и вязкой мантии), и металлического ядра. Внешняя часть ядра жидкая, а внутренняя – твердая. Строение планеты схоже с персиком:

  • тонкая корочка – земная кора, средняя мощность 45 км (от 5 до 70 км), наибольшая толщина под крупными горами;
  • слой верхней мантии (600 км), содержит слой, отличающийся по физическим характеристикам (уменьшение скорости сейсмических волн), в котором вещество либо нагрето, либо чуть-чуть расплавлено — слой называемый астеносфера (50-60 км под океанами и 100-120 км под материками).

Часть Земли, которая находится вместе с земной корой и верхней частью мантии, до слоя астеносферы, называется Литосфера.

  1. Граница между верхней и нижней мантией (глубина 660 км) граница с каждым годом становится все более четкой и резкой, толщина 2 км, на ней меняется скорость волн и состав вещества.
  2. Нижняя мантия доходит до глубины 2700 — 2900 км, благодаря ученым России установлено, что возможно существование еще одной границы в нижней мантии, т.е. существование средней мантии.
  3. Внешнее ядро – жидкое вещество (глубина 4100 км), которое не пропускает поперечные волны, не обязательно, что эта часть имеет вид некой жидкости, просто это вещество обладает характеристиками жидкого объекта.
  4. Внутреннее ядро – твердое вещество, железо с примесями никеля (Fe: 85,5%; Ni: 5,20%), глубина 5150 – 6371 км.

Все данные получены косвенно, так как бурение скважин на такую глубину не производилось, но они теоретически доказаны.

Сила тяжести в любой точки земли зависит от ньютоновского тяготения, но важно размещение плотностных неоднородностей, которое и объясняет непостоянство силы тяжести. Присутствует эффект изостазии (уравновешивания), чем выше гора тем больше корень горы

Ярким примером эффекта изостазии является айсберг. Парадокс на Северном Кавказе, нет уравновешивание, почему это происходит до сих пор не известно.

Атмосфера и гидросфера Земли условия существования будущей жизни 4,33,8 млрд лет назад

В начале земной эволюции базальтовый слой земной коры образовывался в недрах планеты и расплавленная магма поднималась вверх по разломам коры. Она содержала газы. При высоких температурах и давлении химические реакции протекали бурно. Их продуктами становились такие привычные нам земные вещества, как азот, водород, монооксид углерода (угарный газ), углекислый газ и вода. Можно сказать, что первичная атмосфера вышла из земных недр.

Первичная атмосфера не была похожа на современную. Древние вулканы выбрасывали облака газов, и атмосфера представляла собой их смесь с парами воды, соляной, борной и плавиковой кислот

Масса Земли к тому времени была уже достаточно большой, чтобы удерживать атмосферные газы за счет сил притяжения.

Однако первичная атмосфера не была похожа на современную.

Древние вулканы выбрасывали облака газов. Более легкие из них (водород и гелий) поднимались вверх, достигая открытого космоса, а тяжелые удерживались земным притяжением у поверхности планеты. Из этих газов 4,3–3,8 млрд лет назад и сложилась первичная атмосфера Земли. Конечно, то, что выдыхали вулканы, сильно отличалось от сегодняшней азотно-кислородной атмосферы. Юная планета была окружена облаками азота, аммиака, углекислого газа, метана, водорода, инертных (благородных) газов, а также парами воды, соляной, борной и плавиковой кислот. Только кислорода в первичной атмосфере почти не было — его содержание в «воздухе» древней планеты составляло менее 0,001% от нынешней концентрации.

В те времена практически весь кислород был связан в различных химических соединениях и не существовал в свободном состоянии. Ядовитая, непригодная для дыхания атмосфера также не обладала и озоновым слоем, который защищает сегодня все живое от космической радиации. Однако постепенно она обогащалась продуктами сгорания метеоритов.

Так планета Земля выглядит из космоса

Современная атмосфера Земли совсем не похожа на древнюю: ее главные составляющие — азот (3/4 объема), кислород (1/5) и благородный газ аргон (около 1/100). В ней существенно меньше углекислого газа и водяных паров, а другие летучие элементы представлены в крайне малых, как говорят химики, следовых количествах.

Медленное охлаждение Земли и формирование первичной атмосферы помогли появиться и водной оболочке планеты — гидросфере. Как мы знаем, в древней атмосфере было очень много водяного пара, который вырывался из недр вместе с расплавленной лавой. Конденсируясь, он выпадал в виде дождей. На земной поверхности собирались потоки воды, они сливались вместе и заполняли углубления. Так возникали древнейшие озера. Поверхность Земли была еще слишком горячей, жидкость закипала, и столбы пара снова поднимались в атмосферу. Такая циркуляция воды помогала остудить поверхность планеты. Со временем озера становились все крупнее, превращаясь в океаны. Новые потоки воды несли в них частицы горных пород, продукты выветривания и растворенные вещества с земной поверхности. Последние представляли собой смесь солей. Таким образом морская вода обретала свой вкус — именно такой, какой мы знаем сегодня.

Описанная схема формирования первичной атмосферы и гидросферы выглядит последовательной и логичной, но ведь никто из ученых не мог непосредственно наблюдать за теми процессами, которые протекали около 4 млрд лет назад. Мы имеем дело с гипотезами, основанными на косвенных данных. В них пока еще немало противоречий и загадок. Наука знает очень немного про первый период земной эволюции.

Первоначально жизнь имела довольно странные формы. Рыб еще не было, зато под водой обитали многоногие черви жутковатого вида и закованные в панцири трилобиты

Земля — единственная среди планет Солнечной системы, где существует развитая гидросфера. Воды на нашей планете так много, что она занимает примерно 2/3 ее поверхности, образуя Мировой океан. Верхние слои коры, земную поверхность, нижние слои атмосферы и гидросферу иногда объединяют вместе и называют географической (ландшафтной) оболочкой.

Поделиться ссылкой

Атмосфера Земли

Атмосфера – газовая оболочка окружающая Землю. Условно она граничит с межпланетным пространством на расстоянии 1300 км. Официально считается, что граница атмосферы определяется на высоте 118 км, то есть выше этого расстояния аэронавтика становится полностью невозможной.

Масса воздуха (5,1 — 5,3)*1018 кг. Плотность воздуха у поверхности моря составляет 1,2 кг/м3.

Возникновение атмосферы обуславливается двумя факторами:

  • Испарение вещества космических тел при падении их на Землю.
  • Дегазация земной мантии – выделение газа при вулканических извержениях.

С возникновением океанов и появлением биосферы атмосфера начала меняться за счёт газообмена с водой, растениями, животными и продуктами их разложения в почвах и болотах.

Строение атмосферы:

  1. Планетарный пограничный слой – самый нижний слой газовой оболочки планеты, свойства и характеристики которого в значительной части определяются взаимодействием с типом поверхности планеты (жидкая, твердая). Толщина слоя 1-2 км.
  2. Тропосфера – нижний слой атмосферы, наиболее изученный, в разных широтах имеет разные значения толщины: в полярных областях 8-10 км, умеренные широты 10-12 км, на экваторе 16-18 км.
  3. Тропопауза – переходный слой между тропосферой и стратосферой.
  4. Стратосфера – слой атмосферы, находящийся на высоте от 11 км до 50 км. Незначительное изменение температуры в начальном слое с последующим повышением в слое 25 – 45 км от -56 до 0 С.
  5. Стратопауза – пограничный слой между стратосферой и мезосферой. В слое стратопаузы температура держится на уровне 0 С.
  6. Мезосфера – слой начинается на высоте 50 км с толщиной около 30-40 км. Температура понижается на 0,25-0,3 С с увеличением высоты на 100 м.
  7. Мезопауза – переходный слой между мезосферой и термосферой. Температура в этом слое колеблется на уровне — 90 С.
  8. Термосфера – верхняя точка атмосферы высота около 800 км. Рост температуры происходит до высот 200 – 300 км, где достигается значения порядка 1500 К, затем с повышением высоты колеблется в этом пределе. Область ионосферы, место где происходит ионизация воздуха («полярное сияние») лежит внутри термосферы. Толщина слоя зависит от уровня активности Солнца.

Существует предельная линия, которая отделяет атмосферу Земли и космическое пространство, имеет название – Линия Кармана. Высота 100 км над уровнем моря.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector