Справочник ЭкологаКонтинентальный тип земной коры

Изучение строения земной коры с помощью сейсмоволн

Сейсмические колебания могут быть вызваны источни­ками двух видов: естественными и искусственными. Естествен­ными источниками колебаний являются землетрясения, волны которых несут необходимую информацию о плотности по­род, сквозь которые они проникают.

Арсенал искусственных источников колебаний более обширен, но в первую очередь ис­кусственные колебания вызываются обыкновенным взрывом, однако есть и более «тонкие» способы работы — генераторы направленных импульсов, сейсмовибраторов и т.п.

Проведением взрывных работ и изучением скоростей сейсмических волн занимается сейсморазведка — одна из важнейших отраслей современной геофизики.

Что же дало изучение сейсмических волн внутри Земли? Анализ их распространения выявил несколько скачков изменения ско­рости при прохождении через недра планеты.

Земная кора

Первый скачок, при котором скорости возрастают с 6,7 до 8,1 км/с, как счи­тают геологи, регистрирует подошву земной коры. Эта по­верхность располагается в разных местах планеты на различных уровнях, от 5 до 75 км. Граница земной коры и нижележащей оболочки — мантии, получила название «поверхности Мохоровичича», по имени впервые установившего ее югославского ученого А. Мохо­ровичича.

Мантия

Мантия залегает на глубинах до 2 900 км и делится на две части: верхнюю и нижнюю. Граница между верхней и нижней мантией также фиксируется по скачку скорости рас­пространения продольных сейсмических волн (11,5 км/с) и располагается на глубинах от 400 до 900 км.

Верхняя ман­тия имеет сложное строение. В ее верхней части имеется слой расположенный на глубинах 100—200 км, где проис­ходит затухание поперечных сейсмических волн на 0,2— 0,3 км/с, а скорости продольных волн, по существу, не ме­няются. Этот слой назван волноводом. Его толщина обычно равняется 200—300 км.

Часть верхней мантии и кора, залегаю­щие над волноводом, называются литосферой, а сам слой пониженных скоростей — астеносферой.

Таким образом, литосфера представляет собой жесткую твердую оболочку, подстилаемую пластичной астеносфе­рой. Предполагается, что в астеносфере возникают процес­сы, вызывающие движение литосферы.

Внутреннее строение нашей планеты

Ядро Земли

В подошве мантии происходит резкое уменьшение ско­рости распространения продольных волн с 13,9 до 7,6 км/с. На этом уровне лежит граница между мантией и ядром Зем­ли, глубже которой поперечные сейсмические волны уже не распространяются.

Радиус ядра достигает 3500 км, его объем: 16% объема планеты, а масса: 31% массы Земли.

Многие ученые считают, что ядро находится в расплавленном состоя­нии. Его внешняя часть характеризуется резко пониженными значениями скоростей продольных волн, во внутренней ча­сти (радиусом в 1200 км) скорости сейсмических волн вновь возрастают до 11 км/с. Плотность пород ядра равна 11 г/см3, и она обуславливается наличием тяжелых элементов. Таким тяжелым элементом может быть железо. Вероятнее всего, железо является составной частью ядра, так как ядро чисто железного или железо-никелевого состава должно иметь плотность, на 8—15% превышающую существующую плот­ность ядра. Поэтому к железу в ядре, по-видимому, при­соединены кислород, сера, углерод и водород.

1. Континентальный тип земной коры

В строении континентальной коры в соответствии с ранними представлениями участвуют два комплекса: I) осадочный, состоящий из осадочных горных пород и 2) консолидированный, сложенный метаморфическими и магматическими породами. Второй комплекс подразделяется на два слоя — «гранитный» и «базальтовый». Гранитный слой ещё называют гранито-гнейсовым или гранито-метаморфическим. Название «базальтовый слой» было основано на сходстве скоростей сейсмических волн в этом слое со скоростями, характерными для базальтов (6,6 — 7,4 км/с). Однако, поскольку подобные скорости наблюдаются и в метаморфических породах высокой (гранулитовой) степени метаморфизма, этот слой называют также граиулито-базитовым. Граница между гранито-гнейсовым и грапулито-базитовым слоями называется границей Конрада. Она в большинстве случаев выражена нечётко. Скорости распространения продольных сейсмических волн составляют в осадочном слое 3-5 км/с, в гранито-гнейсовом — 5,5 — 6,5 км/с, в гранулито- базитовом — 6,6 — 7,4 км/с.

Мощности слоёв переменны. Мощность осадочного слоя колеблется от 0 м на щитах и массивах (Балтийском, Алданском и др.) до 5 км в пределах континентальных равнин и до 10 — 15 км в крупных прогибах и авлакогенах консолидированной коры. В предгорных и межгорных прогибах этот слой может достигать 15 — 20 км. Мощность гранитогнейсового слоя изменяется от 10 до 25 км. На равнинах она составляет 15 — 20 км, в горных районах — 20 — 25 км. Мощность гранулито- базитового слоя меняется от 10 до 20 км в пределах платформ и увеличивается до 25 — 35 км в горных сооружениях.

В целом, континентальная земная кора имеет различную мощность: в пределах континентальных равнин-платформ — 35 — 40 км; в молодых горных сооружениях — 55 — 70 км. Максимальная мощность — 70 — 75 км под Гималаями и Андами.

Геофизические исследования последних лет и данные по Кольской сверхглубокой скважине позволили предложить новую модель строения земной коры. По данным Н.И. Павленковой, консолидированная часть континентальной коры (ниже осадочного слоя) подразделяется не на два слоя, а на три этажа.

По скоростям сейсмических волн глобальными границами земной коры являются поверхность кристаллического фундамента (Ко) и граница Мохо, отличающаяся высокой величиной граничных скоростей (7,8 — 8,3 км/с).

Внутри консолидированной коры выделяются 3 этажа — верхний, промежуточный и нижний.

Верхний этаж отделяется от промежуточного границей К] на глубине 10-15 км. Этаж характеризуется вертикалыюслоистой структурой и дифференцированностью отдельных блоков по составу и физическим параметрам. Скорость сейсмических волн варьирует от 5,9 до 6,3 км/с.

Промежуточному этажу свойственна тонкая горизонтальная рассло- енность коры. В нём наблюдаются прослои (пластины) с пониженными скоростями сейсмических волн (около 6 км/с), аномальные по плотности тела, и зоны с повышенной электропроводностью. Это даёт основание выделять промежуточный этаж как ослабленный слой, по которому возможны горизонтальные подвижки вещества. Мощность этажа достигает 10-15 км. Предполагается, что верхний и промежуточный этажи сложены в основном кислыми магматическими и метаморфическими породами.

Нижний этаж отделяется от промежуточного границей раздела Ко. Он сложен метаморфическими породами гранулитовой фации, а также основными и ультраосновными магматитами. Мощность нижнего этажа варьирует от 8 до 10 км, скорость продольных волн составляет 6,8 — 7,0 км/с.

Подстилается нижний этаж поверхностью Мохоровичича, фиксирующей границу земной коры с верхней мантией. В пределах верхней мантии скорость продольных сейсмических волн возрастает до 7,8 — 8,3 км/с.

Температура земной коры

Важным энергетическим источником для обитателей Земли является тепло ее коры.
Температура увеличивается по мере углубления в нее. Самый близкий к поверхности 30-метровый слой, именуемый гелиометрическим, связан с теплом солнца и колеблется в зависимости от сезона.

В следующем, более тонком слое, который увеличивается в континентальном климате, температура постоянна и соответствует показателям конкретного места измерения.
В геотермическом слое коры температура связана с внутренним теплом планеты и растет по мере углубления в нее. Она в разных местах разная и зависит от состава элементов, глубины и условий их расположения.

Считается, что температура в среднем повышается на три градуса по мере углубления на каждые 100 метров. В отличие от континентальной части температура под океанами растет быстрее.
После литосферы располагается пластичная высокотемпературная оболочка, температура, которой составляет 1200 градусов. Называется она астеносферой. В ней есть места с расплавленной магмой.

Проникая в земную кору, астеносфера может изливать расплавленную магму, вызывая явления вулканизма.

Типы строения земной коры

км2. Осадочная оболочка покрывает 119 млн. км2, т.е. 80% общей площади суши, выклиниваясь в направлении к древним щитам платформ. Сложена она преимущественно позднепротерозойскими и фанерозойскими осадочными и вулканогенными породами, хотя в ее составе присутствуют в незначительном количестве и более древние средне и раннепротерозойские слабо метаморфизованные отложения протоплатформ.

Площади выходов осадочных пород с увеличением возраста убывают, а кристаллических пород – растут.

Осадочная оболочка земной коры океанов, занимающих 58% общей площади Земли, залегает на базальтовом слое. Возраст ее отложений по данным глубоководного бурения охватывает интервал времени от верхней юры до четвертичного периода включительно. Средняя мощность осадочной оболочки Земли оценивается в 2,2 км, что соответствует 1/3000 радиуса планеты. Общий объем слагающих ее образований примерно 1100 млн.

км3, что составляет 10,9% от общего объема земной коры и 0,1% от общего объема Земли. Общий объем океанских осадков оценивается в 280 млн. км3. Средняя мощность земной коры оценивается в 37,9 км, что составляет 0,94% от общего объема Земли. Вулканические породы составляют 4,4% на платформах и 19,4% в складчатых областях от общего объема осадочной оболочки.

В платформенных областях и, особенно, в океанах широко распространены базальтовые покровы, занимающие более чем две трети поверхности Земли.

Земная кора, атмосфера и гидросфера Земли сформированы вследствие геохимической дифференциации нашей планеты, сопровождавшейся плавлением и дегазацией глубинного вещества. Формирование земной коры обусловлено взаимодействием эндогенных (магматических, флюидно-энергетических) и экзогенных (физическое и химическое выветривание, разрушение, разложение пород, интенсивное терригенное осадконакопление) факторов.

Большое значение при этом имеет изотопная систематика магматических пород, поскольку именно магматизм несет в себе информацию о геологическом времени и вещественной специфике поверхностных тектонических и глубинных мантийных процессов, ответственных за формирование океанов и континентов и отражает важнейшие особенности процессов превращения глубинного вещества Земли в земную кору. Наиболее обоснованным считается последовательное образование за счет деплетированной мантии океанской коры, которая в зонах конвергентного взаимодействия плит формирует кору переходного типа островных дуг, а последняя после ряда структурно-вещественных преобразований превращается в континентальную земную кору.

Функции земной коры

К основным функциям земной коры принято относить:

  • ресурсную;
  • геофизическую;
  • геохимическую.

Первая из них обозначает наличие ресурсного потенциала Земли. Он представляет собой в первую очередь совокупность запасов полезных ископаемых, находящихся в литосфере. Кроме того, ресурсная функция включает в себя ряд факторов среды обитания, обеспечивающих жизнь человека и других биологических объектов. Одним из них является тенденция образования дефицита твердой поверхности.

так делать нельзя. спасем нашу Землю фото

Тепловые, шумовые и радиационные эффекты реализуют геофизическую функцию. Например, возникает проблема естественного радиационного фона, который на земной поверхности в основном безопасен. Однако в таких странах как Бразилия и Индия он в сотни раз может превышать допустимый. Считается, что его источником является радон и продукты его распада, а также некоторые виды человеческой деятельности.

Геохимическая функция связана с проблемами химического загрязнения, вредного для человека и других представителей животного мира. В литосферу попадают различные вещества, обладающие токсическими, канцерогенными и мутагенными свойствами.

Они безопасны, когда находятся в недрах планеты. Извлеченные из них цинк, свинец, ртуть, кадмий и другие тяжелые металлы могут представлять большую опасность. В переработанном твердом, жидком и газообразном виде они попадают в окружающую среду.

Элементы земной коры

Самыми значимыми по величине элементами земной коры считают материки и континенты, а также океаны.

В целом определить тип строения коры можно только при помощи сейсмических способов и методов. Например, не все части океана являются частью океанической коры. Так, в Северном Ледовитом океане существуют области шлейфов, которые по своему составу являются частью материковой коры. Стоит отметить, что различия в строении не закачиваются составом и строением коры, но имеются и на более глубоких уровнях и слоях. К примеру, верхняя мантия под континентами и материками имеет различную структуру. На сегодняшний день изучены отличия вплоть до глубины в 700 километров.

Внутри континентов или океаном можно говорить и о более мелких структурных элементах, например о платформах.  Эти элементы встречаются  и в океанах и на континентах. Основной характеристикой платформ принято считать  относительно ровный рельеф и на поверхности и на глубине.

В подводной части выделяют срединно-океанские подвижные пояса. Они чаще всего представлены хребтами, имеющими в осевой части рифовые зоны. Они могут быть пересечены разломами. Сегодня эти разломы называют зонами спреддинга. В них океанское дно постепенно расширяется и появляется так называемая новообразованная океанская кора.

Таким образом в океанах существуют платформы и срединно-океанские пояса.

Материковая земная кора

Материковая или континентальная кора отличается от океанической коры толщиной и устройством
. Континентальная кора расположена под материками, но её край не совпадает с береговой линией. С точки зрения геологии настоящим материком является вся площадь сплошной материковой коры. Тогда получается, что геологические материки больше географических материков. Прибрежные зоны материков, называемые шельфом
– это есть временно залитые морем части материков. Такие моря как Белое, Восточно-Сибирское, Азовское – расположены на материковом шельфе.

В континентальной земной коре выделяются три слоя
:

  • Верхний слой – осадочный;
  • Средний слой – гранитный;
  • Нижний слой – базальтовый.

Под молодыми горами такой тип коры имеет толщину$ 75$ км, под равнинами – до $45$ км, а под островными дугами – до $25$ км.
Верхний осадочный слой материковой коры формируется глинистыми отложениями и карбонатами мелководных морских бассейнов и грубообломочными фациями в краевых прогибах, а также на пассивных окраинах континентов атлантического типа.

Вторгшаяся в трещины земной коры магма сформировала гранитный слой
в составе которого есть кремнезем, алюминий и другие минералы. Толщина гранитного слоя может доходить до $25$ км. Слой этот очень древний и имеет солидный возраст – $3$ млрд. лет. Между гранитным и базальтовым слоем, на глубине до $20$ км, прослеживается граница Конрада
. Она характеризуется тем, что скорость распространения продольных сейсмических волн здесь увеличивается, на $0,5$ км/сек.

Формирование базальтового
слоя произошло в результате излияния на поверхность суши базальтовых лав в зонах внутриплитного магматизма. Базальты содержат больше железа, магния и кальция, поэтому они тяжелее гранита. В пределах этого слоя скорость распространения продольных сейсмических волн от $6,5$-$7,3$ км/сек. Там, где граница становится размытой, скорость продольных сейсмических волн растет постепенно.

Замечание 2

Общая масса земной коры от массы всей планеты составляет всего $0,473$ %.

Одну из первых задач, связанную с определением состава верхней континентальной
коры, взялась решать молодая наука геохимия
. Так как кора состоит из множества самых разнообразных пород, эта задача была весьма сложной. Даже в одном геологическом теле состав пород может сильно варьироваться, а в разных районах могут быть распространены разные типы пород. Исходя из этого, задача заключалась в определении общего, среднего состава
той части земной коры, которая на континентах выходит на поверхность. Эту первую оценку состава верхней земной коры сделал Кларк
. Он работал сотрудником геологической службы США и занимался химическим анализом горных пород. В ходе многолетних аналитических работ, ему удалось обобщить результаты и рассчитать средний состав пород, который был близок к граниту
. Работа Кларка
подверглась жесткой критике и имела противников.

Вторую попытку по определению среднего состава земной коры предпринял В. Гольдшмидт
. Он предположил, что двигающийся по континентальной коре ледник
, может соскребать и смешивать выходящие на поверхность породы, которые в ходе ледниковой эрозии будут отлагаться. Они то и будут отражать состав средней континентальной коры. Проанализировав состав ленточных глин, которые во время последнего оледенения отлагались в Балтийском море
, он получил результат, близкий к результату Кларка.
Разные методы дали одинаковые оценки. Геохимические методы подтверждались. Этими вопросами занимались, и широкое признание получили оценки Виноградова, Ярошевского, Ронова и др
.

Океаническая земная кора

Океаническая кора
расположена там, где глубина моря больше $ 4$ км, а это значит, что она занимает не все пространство океанов. Остальная площадь покрыта корой промежуточного типа.
Кора океанического типа устроена не так, как континентальная кора, хотя тоже разделяется на слои. В ней практически совсем отсутствует гранитный слой
, а осадочный очень тонкий и имеет мощность менее $1$ км. Второй слой пока еще неизвестен
, поэтому его называют просто вторым слоем
. Нижний, третий слой – базальтовый
. Базальтовые слои континентальной и океанической коры похожи скоростями сейсмических волн. Базальтовый слой в океанической коре преобладает. Как говорит теория тектоники плит, океаническая кора постоянно формируется в срединно-океанических хребтах, потом она от них отходит и в областях субдукции
поглощается в мантию. Это свидетельствует о том, что океаническая кора является относительно молодой
. Наибольшее количество зон субдукции характерно для Тихого океана
, где с ними связаны мощные моретрясения.

Определение 1

Субдукция
– это опускание горной породы с края одной тектонической плиты в полурасплавленную астеносферу

В том случае, когда верхней плитой является континентальная плита, а нижней – океаническая – образуются океанические желоба
.
Её толщина в разных географических зонах варьируется от $5$-$7$ км. С течением времени толщина океанической коры практически не изменяется. Связано это с количеством расплава, выделяющегося из мантии в срединно-океанических хребтах и толщиной осадочного слоя на дне океанов и морей.

Осадочный слой
океанической коры небольшой и редко превышает толщину в $0,5$ км. Состоит он из песка, отложений останков животных и осажденных минералов. Карбонатные породы нижней части на большой глубине не обнаруживаются, а на глубине больше $4,5$ км карбонатные породы замещаются красными глубоководными глинами и кремнистыми илами.

Базальтовые лавы толеитового состава сформировали в верхней части базальтовый слой
, а ниже лежит дайковый комплекс
.

Определение 2

Дайки
– это каналы, по которым базальтовая лава изливается на поверхность

Базальтовый слой в зонах субдукции
превращается в экголиты
, которые погружаются в глубину, потому что имеют большую плотность окружающих мантийных пород. Их масса составляет около $7$ % от массы всей мантии Земли. В пределах базальтового слоя скорость продольных сейсмических волн составляет $6,5$-$7$ км/сек.

Средний возраст океанической коры составляет $100$ млн. лет, в то время как самые старые её участки имеют возраст $156$ млн. лет и располагаются во впадине Пиджафета в Тихом океане.
Сосредоточена океаническая кора не только в пределах ложа Мирового океана, она может быть и в закрытых бассейнах, например, северная впадина Каспийского моря.
Океаническая
земная кора имеет общую площадь $306$ млн. км кв.

Характерная черта эволюции Земли — дифференциация вещества, выражением которой служит оболочечное строение нашей планеты. Литосфера, гидросфера, атмосфера, биосфера образуют основные оболочки Земли, отличающиеся химическим составом, мощностью и состоянием вещества.

Рельеф земной коры

Земная кора является своеобразным разделителем внешней и внутренней оболочек планеты. Поверхность земной коры  неоднородна и обладает различными неровностями. Совокупность всех из них и называется рельефом коры.

Формирование рельефа земной коры зависит от многочисленных факторов: внешних и внутренних.

Внешние (или экзогенные) факторы появляются в результате деятельности человека, сил гравитации или изменений климата. К таким факторам принято относить оползни, обвалы, лавины, выветривание, образование оврагов и многие другие.

Внутренние (или эндогенные) факторы связаны с движением тектонических плит или иными процессами, происходящими внутри планеты. К ним принято относить вулканизмы, землетрясения и прочие явления.

Вулканизмами называют совокупность процессов и явлений, возникающих в результате внедрения магмы в кору Земли  выплескиванием (извержением) ее на поверхность.  При извержении лава растекается по трещинам и образует покровы, а при извержении по центральному каналу образуется конус вулкана, который может быть представлен в виде купола, конуса или щита.

При землетрясениях важно понимать, что его очаг находится обычно на большой глубине ( не менее нескольких десятков километров от поверхности). Расходящиеся от него сейсмические волны и вызывают землетрясения, пик которого всегда находится непосредственно над очагом

Большинство из них происходит на окраинах литосферных плит или в местах их столкновений. Например, сейсмически опасным является поя, проходящий от Атлантического  океан до Тихого через территории Восточной Азии. Также большую сейсмическую активность имеют срединно-океанические хребты. Иногда землетрясения также возникают в результате деятельности людей, например после  перемещений гигантских горных пород, создания водохранилищ и прочих процессов, создающих дополнительную нагрузку на литосферу.

Строение земной коры

Земная кора — внешняя твердая оболочка Земли, верхняя часть литосферы. От мантии Земля отделена поверхностью Мохоровичича. Различают материковую кору толщиной от 35—45 км под равнинами до 70 км в области гор и океаническую — 5—10 км на дне морей и океанов. Возраст наиболее древних участков зем­ной коры установлен в 3,54 млрд. лет.

В строении земной коры океанического типа выделяют следую­щие слои: неуплотненных осадочных пород (до 1 км), вулкани­ческий океанический, который состоит из уплотненных осадков (1—2 км), базальтовый (4—8 км).

Земная материковая кора состоит из таких оболочек: коры вы­ветривания, осадочной, метаморфической, гранитной, базальтовой.

Кора выветривания — это верхняя часть земной коры. Акаде­мик О. Е. Ферсман определил, что ее толщина составляет около 800 м, температура не превышает 90 °С, давление — 150—250 ат­мосфер. В этой зоне непрерывно происходят процессы физическо­го и химического выветривания всех пород и минералов, вслед­ствие чего образуются разные осадочные породы, формирующие поверхностную зону.

Осадочная оболочка глубиной до 25 км состоит из разных по­род — обломочных, глинистых и органических. Средний удельный вес этих пород 2,5, температура — меньше 100°, а давление — до 100 атмосфер.

Метаморфическая оболочка залегает на гранитах и базальтах и размещена между изверженными и осадочными породами не­сплошным слоем. Она начинается на глубине 20—25 км и ближе от поверхности. Под влиянием высокой температуры и давления осадочные и изверженные породы видоизменяются до гнейсов, сланцев, мрамора и кварцитов.

Удельная масса пород метаморфической оболочки составляет 2,7. Из химических элементов преобладают кислород, водород, кремний, алюминий, углерод и др. В этой зоне происходят пере­кристаллизация и изменение химического состава горных пород.

Гранитная оболочка залегает неплотно, толщина в значитель­ной мере колеблется. Например, под северной частью Ледовитого океана она составляет около 8 км, под Атлантическим — около 16, под большей частью европейского материка — 26, под Кавказ­ским массивом — 50, под Тянь-Шанем — 84 км. Химический со­став ее различный. Наиболее распространенными элементами яв­ляются кислород, кремний, калий, натрий, железо, кальций, маг­ний, водород. Поскольку главное место в гранитной оболочке принадлежит кремнию и алюминию, ее еще называют сиал.

Базальтовая оболочка имеет толщину 70—85 км (под океаном толще, а под континентами тоньше). Удельная масса ее 2,1—3,3, давление в нижней границе — до 20000 атмосфер, температура — до 1000 °С. Эта оболочка состоит из плагиоклазов, авгита, оливи­на и магнитного железняка. Из химических элементов распростра­нены кислород, кремний, алюминий, магний и кальций.

Кора Земли под влиянием разных геологических процессов с начала ее возникновения непрерывно изменяется. В процессе из­менений образуются горы, понижения и глубокие впадины, изме­няются границы морей и океанов, морское дно превращается в горы и суходолы. Такие изменения иногда происходят быстро, катастрофично, например, при возникновении вулканов, землетря­сений, а иногда очень медленно, а часто и малозаметно, напри­мер вековые колебания коры Земли, разрушения гор, отложения на дне морей и океанов.

Эти геологические процессы на поверхности Земли и в ее нед­рах принято делить на две большие группы по источникам энер­гии: экзогенные и эндогенные.

Возможно, Вас так же заинтересует:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector